Fundamentals of Optical Fiber Communications

Wim van Etten and Jan van der Plaats

Eindhoven University of Technology, The Netherlands

Prentice Hall

New York London Toronto Sydney Tokyo Singapore

Contents

	Pre	face	xi
1	Intr	oduction	1
2	1.1	The configuration of a glassfiber	4
	1.2	The manufacture of fibers	6
	1.3		9
	1.4	0 0	13
	1.5	U	17
	1.6	System model	17
		References	18
		Problem	19
2	Ana	lysis of the slab waveguide	20
	2.1		20
	2.2		20
	2.3		- 22
	2.4		28
	2.5	The propagation constant of a mode	28
	2.6	Geometric optics interpretation	29
		References	32
		Problems	32
3		lysis of the step index fiber	33
	3.1		34
	3.2		36
	3.3	5	40
	3.4		40
	3.5		45
	3.6		52
	3.7	Linearly polarized (LP) modes	52
		References	58
		Problems	58
4	Dier	persion in the step index fiber	60
		Phase characteristic and modulation bandwidth	6 2

	4.2	The propagation constant of a mode in a step index fiber	68
	4.3	Waveguide dispersion	69
		Material dispersion	72
		Waveguide and material dispersion in a step index fiber	73
		Multimode dispersion	75
	4.7		76
		References	76
		Problems	76

5	The monomode fiber		
	5.1	The electromagnetic field in a monomode step index fiber	79
	5.2	Power flow in the z-direction	84
	5.3	The mode field diameter	86
	5.4	Waveguide dispersion in monomode fibers	88
		Waveguide and material dispersion in monomode fibers	90
		Dispersion-shifted and dispersion-flattened fibers	92
		References	94
		Problems	95

6	Pro	pagation of light rays in multimode graded index fibers	96
1602	6.1		97
	6.2	Solutions of the eikonal equation for a cylindrical symmetrical	
		fiber and the resulting ray equations	99
	6.3	Some analytical solutions	101
	6.4	Numerical solutions	109
	6.5	Ray congruencies, the h , g -coordinate system	110
	6.6	The local numerical aperture	114
	6.7	The relationship between ray congruencies and modes	115
	6.8	The WKB method	117
	0.0	References	119
		Problems	119
-	D:	enter in ended index fibers	121
7		persion in graded index fibers	122
	7.1	Mode model	122
	7.2	Ray model	
		References	135
		Problems	135
8	Ligh	nt sources and detectors	137
	0	Choosing the wavelength region	137

8.2	The light-emitting diode (LED)	139
8.3	The semiconductor laser diode (LD)	147
8.4	Semiconductor laser versus LED	154
8.5	Photodiodes	156
	References	166
	Problems	168

9	Мо	ulation of semiconductor light sources	169
		The rate equations	170
		The laser condition	173
	9.3	The efficiency of lasers	175
		The turn-on delay of a laser and the behaviour of an LED	177
	9.5	Transient behaviour of a laser	178
	9.6	Modulation of a laser by small signals	179
		Amplitude noise of lasers	183
		References	183
		Problems	185

10	Transfer characteristic and impulse response of fiber communication				
	systems				
	10.1	Transmission via a single-mode fiber	185		
	10.2	Transmission via multimode fibers	195		
		References	211		
		Problems	212		

11	Powe	er launching and coupling efficiency	213
		The ray density of a Lambertian source in the phase space	214
	11.2	Power launching from the source into a multimode fiber	216
	11.3	Multimode fiber-fiber coupling	221
		Coupling model for single-mode fibers	243
		Power coupling from the source into single-mode fibers	243
	11.6	Single-mode fiber-fiber coupling	251
		Fiber-detector coupling	254
		References	254
		Problems	255
			230

12	Receiver principles and signal-to-noise ratio in analog receivers				
	12.1	Connection diagram and equivalent scheme of photodetectors	258		
	12.2	The impulse response of a PIN photodiode	260		
	12.3	Signal-to-noise ratio in analog receivers	264		

			<u> </u>
٧I	I	1	Contents

	12.4	The thermal noise in front-end amplifiers References	273 280
		Problems	280
13		ivers for digital optical fiber communication systems	283
	13.1	Introduction	283
	13.2	¥ 1	284
	13.3		289
	13.4	0	290 302
		References	302
		Problems	502
14		m noise	304
		Intensity noise of the light source	305
	14.2		306
		Partition noise	306
		Modal noise	312 320
	14.5	The signal-to-noise ratio due to system noise and receiver noise	320
		References Problems	322
		rioblems	522
15	Syste	m components and aspects of system design	324
1.5	15.1		324
	15.2		325
	15.3		326
	15.4		328
	15.5	1	333
		Polarization-maintaining fiber	334
	15.7	Wavelength multiplexing	336
	15.8	Repeater distance and link budget	341
		Line coding	344
	15.10	Selection of the system components	348
		References	350
16		erent optical fiber communication	351
	16.1		351
	16.2	Basic principles of coherent optical systems	352
	16.3	Signal-to-noise ratio of coherent optical receivers	356
	16.4	Balanced mixing and phase diversity reception	358
	16.5	Polarization aspects of coherent systems	365

v

	Contents	IX
	Concluding remarks References	367 367
		507
Appendix 1	Bessel functions	369
Appendix 2	Transmission of modulated signals via bandpass systems	374
Appendix 3		
	optical systems	378
Appendix 4	Poisson processes	386
Appendix 5	Some physical constants	400

Index

401

Preface

Since the early 1970s, the authors of this book have given courses in optical glassfiber communications at the Department of Electrical Engineering of the Eindhoven University of Technology, as a part of their general teaching activities in telecommunications. Over the years they have selected topics that, on the one hand, give a good overview of the main principles of optical fiber communications and, on the other hand, are well suited to being taught in the classroom. This book is a compilation of the class notes originally established by the authors and updated by continuing use. It assumes some basic knowledge of the principles of electromagnetic fields, optics, semiconductor physics, Fourier analysis and noise calculations. Chapters 1, 2, 6, 7, 8, Sections 12.1–12.3 and 13.1–13.3 and Chapter 15 contain material for an undergraduate course, while the rest of the book can be taught in a graduate course. In addition, the text is well suited as a reference for scientists and engineers in research and development laboratories.

Chapter 1 starts with a comparison of optical communication systems with other communication systems of different kinds. Attention is paid to the fabrication processes that are used to produce glassfibers, to the different causes of attenuation and to a method to measure this attenuation. The most important properties of the light sources and the detectors, the elements necessary to form a simple communication link with an optical waveguide as the transmission medium, are reviewed and a general model of a link is established. The first part of the book, Chapters 2-7, deals with the propagation of light through optical waveguides. Chapter 2 starts with the treatment of slab waveguides, on the one hand as an introduction to the solution techniques used in subsequent chapters and on the other hand because these waveguides play an important role in integrated optics. The waveguides are analyzed with the help of Maxwell's equations, the characteristic equation with its discrete solutions is derived and the mode concept is introduced. In Chapter 3 this is repeated for the round step index waveguide. The E, H and hybrid modes are derived and attention is paid to LP modes. The expressions for the phase characteristics that follow from the solutions are further developed in Chapter 4, which treats the dispersion of the waveguides and the influence of the fiber on the bandwidth. A separate chapter, Chapter 5, is devoted to single-mode fibers. The principles derived in the earlier chapters are applied for this special case. Chapter 6 treats graded index fibers. In the previous chapters the wave optics model was used. In this chapter the waveguides are analyzed with the geometric optics model, using the eikonal equation as the starting point. At the end of the chapter the results are compared with the results obtained by the WKB method. In Chapter 7 two

xii Preface

different models are used to derive the dispersion in graded index fibers. Chapter 8 deals with the semiconductor light sources and detectors that are used in optical fiber communication systems. Little attention is paid to the physical background, the emphasis being on the external characteristics. This approach is further elaborated in Chapter 9 for the modulation aspects of the sources. Once the optical fiber waveguiding and the light sources and detectors are introduced, a description of an entire link can be given; this is done in Chapter 10. A great deal of the total link loss is due to coupling losses; Chapter 11 gives an extensive treatment of these coupling losses, both in multimode and single-mode fiber links. The receivers in an optical transmission system require special attention. Noise phenomena are quite different compared to the classical communication model, where the noise is assumed to be additive, stationary and Gaussian. The shot noise, or Poisson noise, does not show these elegant properties. That is why analog receivers (Chapter 12) require a different approach compared to digital receivers (Chapter 13). Apart from the aforementioned shot noise, multimode optical fiber systems can suffer from system noise (Chapter 14), which arises from non-ideal matching of system components. In general, realization of an optical fiber link or network requires more components than standard optical fiber, light source(s) and detector(s). Such components may be: wavelength division multiplexers, optical isolators, polarization-maintaining fibers, etc. These components and other system aspects are treated in Chapter 15. Finally, Chapter 16 has been devoted to coherent optical fiber communication, a subject to which much attention is now being paid in laboratories and which may lead to very promising applications in the future.

A number of subjects closely related to optical fiber communications, but not specific to it, are dealt with in the appendices. These include: Bessel functions, transmission via bandpass systems, Gaussian beams and Poisson processes.

At the end of most of the chapters some exercises are provided, giving the reader the opportunity to check his or her knowledge by means of practical problems.

A task as extensive as writing a book always requires support. We thank Dr Peter Attwood for correcting the English text, and Gerard Baten for producing a number of the figures. One of the authors (W. v. E.) thanks his wife Kitty for typing his part of the manuscript.